TCXO, Temperature Compensated Crystal Oscillator Private
3 years ago - Fashion, Home & Garden - Bārāsat - 187 viewsCrystal oscillators are able to provide a much better level of performance than that provided by LC resonator circuits. Nevertheless crystal oscillators are still affected by temperature.
The angle of the cut and other aspects of the quartz crystal have a major impact on the performance.
As a result special cuts are defined and one known as the AT cut is the most widely used for these and many other quartz crystal RF applications. This gives a good level of performance for RF circuits in terms of suppression of unwanted modes of vibration as well as the frequency range available, and also the temperature stability.
A TCXO adjusts the frequency of the oscillator to compensate for the changes that will occur as a result of temperature changes. To achieve this, the main element within a TCXO is a Voltage Controlled Crystal Oscillator, VCXO. This is connected to a circuit that senses the temperature and applies a small correction voltage to the oscillator as shown below.
INTRODUCTION
The history of the development in crystal filter technology, from the initial concepts of Cady to the current wide range of products, provides a fascinating chapter in the development of today’s highly complex electronic products. The crystal filter has been a particularly critical element in the development of narrowband communications systems. The desire to send multiple voice messages on a single telephone line resulted in the introduction of carrier telephone systems in 1916. These early systems used LC filters in the 10 to 40 kHz frequency range. However, the bandwidth limitations caused by realizable coil Q’s were quickly recognized. In 1929, W.P. Mason of Bell Laboratories developed methods for incorporating crystals into LC lattice filter networks. This work resulted in the development of a 60 to 108 kHz basic group-band filter set used to frequency multiplex 12 voice channels. This work is described in Mason’s 1934 paper which was the basis for essentially all crystal filter designs generated during the next 20 years. During this period the major application for crystal filters was in carrier telephone equipment. However, in the mid-1950s, newer narrowband radio communications systems were developed both for military and commercial use which required high-frequency, stable, narrow-bandwidth filters. In most cases, crystal filters were the answer for these filtering applications and a new manufacturing industry was formed to supply these needs. Other applications quickly followed in navigation and radar equipment, in new fire-control systems, and missile control systems. This increased level of activity resulted in new filter design procedures and substantial improvement in the quality of high-frequency filter crystals.Locally manufactured ceramic filters have traditionally been used throughout the world to treat household water. Currently, the most widely implemented ceramic filter is the Potters for Peace design. The filter is flowerpot shaped, holds about 8-10 liters of water, and sits inside a plastic or ceramic receptacle.
What Is a Ceramic Resonator?
A ceramic resonator is an electric component that exhibits a series resonant and a parallel resonant center frequency. It exhibits a piezoelectric characteristic that makes the ceramic material generate minute electrical energy when subjected to electromechanical expansion and compression. The resulting mechanical energy component produces the electric component and vice versa, and the result is a complex reactance that leads to resonance observed as the characteristic of having a center frequency. Materials such as lead zirconium titanate have a ceramic piezoelectric characteristic.
Oscillators are electronic circuits that generate periodic waveforms. The ceramic resonator may be used as a frequency reference in the electronic oscillator, wherein the accuracy of the resulting frequency is not as high as in the crystal oscillator. Error in frequency for the ceramic resonator circuit may be as high as 5%, while that for the crystal oscillator is less than 0.1%.