Login for faster access to the best deals. Click here if you don't have an account.

How Electric Motors Work Private

3 years ago Fashion, Home & Garden Bareilly   202 views

-- ₹

  • img
Location: Bareilly
Price: -- ₹

Flick a switch and get instant power—how our ancestors would have loved electric motors! You can find them in everything from electric trains to remote-controlled cars—and you might be surprised how common they are. How many electric motors are there in the room with you right now? There are probably two in your computer for starters, one spinning your hard drive around and another one powering the cooling fan. If you're sitting in a bedroom, you'll find motors in hair dryers and many toys; in the bathroom, they're in extractor fans, and electric shavers; in the kitchen, motors are in just about every appliance from clothes washing machines and dishwashers to coffee grinders, microwaves, and electric can openers. Electric motors have proved themselves to be among the greatest inventions of all time. Let's pull some apart and find out how they work!

How an asynchronous motor works—in practice

There are two ways to overcome this problem. One is to use a kind of electric current that periodically reverses direction, which is known as an alternating current (AC). In the kind of small, battery-powered motors we use around the home, a better solution is to add a component called a commutator to the ends of the coil. (Don't worry about the meaningless technical name: this slightly old-fashioned word "commutation" is a bit like the word "commute". It simply means to change back and forth in the same way that commute means to travel back and forth.) In its simplest form, the commutator is a metal ring divided into two separate halves and its job is to reverse the electric current in the coil each time the coil rotates through half a turn. One end of the coil is attached to each half of the commutator. The electric current from the battery connects to the motor's electric terminals. These feed electric power into the commutator through a pair of loose connectors called brushes, made either from pieces of  graphite (soft carbon similar to pencil "lead") or thin lengths of springy metal, which (as the name suggests) "brush" against the commutator. With the commutator in place, when electricity flows through the circuit, the coil will rotate continually in the same direction.

An electric motor for concrete mixers is all about magnets and magnetism: A motor uses magnets to create motion. If you have ever played with magnets you know about the fundamental law of all magnets: Opposites attract and likes repel. So if you have two bar magnets with their ends marked "north" and "south," then the north end of one magnet will attract the south end of the other. On the other hand, the north end of one magnet will repel the north end of the other (and similarly, south will repel south). Inside an electric motor, these attracting and repelling forces create rotational motion. ­

In the above diagram, you can see two magnets in the motor: The armature (or rotor) is an electromagnet, while the field magnet is a permanent magnet (the field magnet could be an electromagnet as well, but in most small motors it isn't in order to save power).

The motor being dissected here is a simple 10 Hp electric motor that you would typically find in a toy.